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[1] The kink instability of a magnetized plasma column (flux rope) is a fundamental
process observed in laboratory and in natural plasmas. Previous theoretical, experimental,
and observational work has focused either on the case of periodic (infinite) ropes (relevant
to toroidal systems) or on finite ropes with both ends tied to a specified boundary
(relevant to coronal ropes tied at the photosphere). However, in the Sun’s corona and in
astrophysical systems there is an abundant presence of finite flux ropes tied at one end
but free at the other. Motivated by recent experiments conducted on the RSX device
(Furno et al., 2006) and by recent theoretical work (Ryutov et al., 2006), the present paper
investigates by simulation the linear and nonlinear evolution of free-ended flux ropes.
The approach is based on comparing the classic case of a periodic flux rope with the
case of a rope tied at one end and free at the other. In the linear phase, periodic and free
ropes behave radically differently. A simulation analysis of the linear phase confirms the
experimental and phenomenological findings relative to an increased instability of a free
rope: the new stability limit is shown to be just half of the classic limit for periodic ropes. In
the nonlinear phase, reconnection is observed to be a fundamental enabler to reach the
eventual steady state. The mechanism for saturation of a flux rope is investigated and
compared with the classic theory (the so-called bubble state model) by Rosenbluth et al.
(1976). A remarkable agreement is found for the classic periodic case. The case of a free rope
is again very different. The saturated state is observed to present a outwardly spiraling
configuration with the displacement of the plasma column increasing progressively and
monotonically from the tied end to the free end. The maximum displacement is observed at
the free end where it is consistent with the displacement observed in a periodic rope.
The key distinction is that in a periodic rope the same displacement is observed throughout
the whole rope to form a helix with constant radius.
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1. Introduction

[2] The kink instability is a classic problem in plasma
physics. It is a crucial consideration in the stability of fusion
devices [Wesson, 2004] and it is a common occurrence in
space and solar physics. For example, flux ropes observed
in the solar corona and in the magnetosphere can be
unstable to the kink mode and such instability has been
observed and studied widely in the literature [Priest and
Forbes, 2000]. Figure 1 shows an examples of a solar
corona image where multiple flux tubes are observed.
Movies are available of satellite observations showing the
dynamic behavior of such coronal loops.

[3] Similarly, astrophysical observations show the pres-
ence of magnetized jets emitted from accreting objects. For
example, Figure 2 shows one of such jets emitted from the
galaxy M87, observed here in the radio frequency range at
VLA.
[4] The kink instability has been studied extensively in

previous literature. Section 4 reviews the previous work of
interest to the present study, but the kink mode is a classic
textbook plasma physics instability [see, e.g., Goedbloed
and Poedts, 2004]. The vast majority of the previous work
referred to the case of a periodic rope as appropriate for a
toroidal plasma where a plasma column closes on itself.
[5] In the solar physics community, flux ropes tied to the

solar corona have been also considered [see, e.g., Hood and
Priest, 1979]. In that case the photosphere is assumed to be
so much heavier to hold fixed the ends of flux ropes linked
to it. However, as can be observed in Figure 1, some flux
ropes become detached from the photosphere at one end
(see upper left corner of Figure 1). This situation is
common in coronal holes where the field lines are open
and one end extends into the solar system. However, free-
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ended ropes may become in existence even in regions of
normally closed field lines, during the dynamical evolution
of the corona where reconnection can lead to the breakup of
field lines that get detached from the corona at one end,
thereby releasing energy from the corona outward into the
solar system. Such processes are for example part of the
mechanisms believed to be behind the so-called coronal
mass ejections [Priest and Forbes, 2000].
[6] Similarly, in the case of astrophysical jets, the tying

of the rope is working at one end only, at the end attached
to the object creating the jet [Blandford, 2002], but the
other end of the jet is clearly free. In the example in Figure 2
the jet is believed to be created in an accretion disk around
a black hole present in the center of galaxy M87 (an
elliptical galaxy also known as NGC 4486 and Virgo A).
[7] The primary novelty of the present paper is in

investigating with nonlinear numerical simulations the kink
instability for free ended systems. Our analysis reaches two
main conclusions.

[8] First, we confirm the predictions of a previous
phenomenological linear theory [Ryutov et al., 2006] via
numerical simulations. Our numerical simulations show
that indeed a system where the field lines are tied at one
end but free at the other is more unstable than the
corresponding periodic (or toroidal) system. This latter
configuration is in itself more unstable than a system
line-tied at both ends, making the free-ended system more
unstable than all systems previously considered. Periodic
systems are unstable when the current exceeds the Kruskal-
Shafranov (KS) limit [Goedbloed and Poedts, 2004],
corresponding to the situation when a surface exists inside
the plasma where the safety factor q = 1. In the system line-
tied at one end and free at the other, the kink instability
appears as soon as q < 2 within the plasma. Note that a rope
line-tied at both ends is more stable than a periodic rope
only when a conducting wall is close enough to the rope. In
the case of a far conducting wall, the instability threshold is
the same for both cases [Ryutov et al., 2004].
[9] Second, we investigate the saturation mechanism for

the instability. We observe that the instability grows on a
Alfvenic timescale until the plasma region reaches the
mode resonant surface. The evolution afterwards require
the process of reconnection. Eventually, the flux rope
reaches saturation at a surface that can be well predicted
using the so-called bubble-state model introduced by
Rosenbluth et al. [1976] for periodic systems. A free-ended
rope evolves through the same stages as a periodic rope, but
its saturation state shows an outward spiraling where the
outer radius of the rope is progressively displaced, from
zero displacement at the tied end to a maximum displace-
ment at the free end. The maximum displacement of the
free end is still consistent with the model by Rosenbluth et
al. [1976].
[10] The paper is organized as follows. Section 2

describes the specific setting used in the present paper to
describe the evolution of flux ropes. The configuration
considered is specific to the RSX device [Furno et al.,
2003] where flux ropes can be studied directly experimen-
tally. Section 3 describes the simulation method used to
study the evolution.

Figure 1. Image of Active Region 9373 (rotated counter-
clockwise over 90 degrees), taken by TRACE [Schrijver et

al., 1999] in its 171 Å pass band on 2001-3-21.

Figure 2. Jet ejected from galaxy M87. Radio intensity at 14.435 GHz observed at VLA on 1994-5-2
[Owen et al., 1989]. On the left side, a flux rope tied at one end and free at the other is shown to form
during the course of an eruption.
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[11] Section 4 focuses on the linear stability comparing
previous predictions and experimental observations at RSX
with numerical simulations. The conclusion, as noted
above, is that the most unstable case is that of flux ropes
with one free end, followed by periodic ropes. Line-tied flux
ropes, instead, are shown to be more stable than both.
[12] Nonlinear evolution and saturation are described in

sections 5 and 6. Section 5 focuses on the reference case of
a periodic rope where previous theories can be validated.
Section 6 deals with the case of a rope free at one end and
tied at the other. Comparison between the two cases is
made. A qualitative agreement with experimental observation is
also provided. Conclusions are drawn in section 7.

2. Description of the System Under Consideration

[13] The Reconnection Scaling Experiment (RSX) at
Los Alamos National Laboratory is described by Furno
et al. [2003, 2005] and takes advantage of recently
developed plasma gun technology [Fiksel et al., 1996] to
create a flux rope that is initially linear but supports fully
three-dimensional (3-D) evolution. One key attribute of
RSX is the ability to continuously adjust the axial guide
field (B0z = 0–2 kGauss) and ion gyro radius independently
of the plasma and current density, providing scans of
plasma b. RSX is one of a few devices [Hansen et al.,
2004; Gekelman et al., 1992] that have ever been used to
study flux 3-D rope dynamics.
[14] Typical plasma parameters are density ne � 3 �

1013 cm�3, electron temperature Te � 3–12eV, B0z = 100 G,
Bq � 10 G, b � 0.5. Typical current rope radius is 2.5 cm.
The Alfven time is of few ms, while the resistive diffusion
time is of the order of 100 ms. For the experimental data

shown here, the flux rope current Irope ramps up with a
selected e-folding time, and instability grows and saturates
for 100 A < Irope < 400 A. Figure 3 shows the typical
profiles observed in RSX.
[15] The RSX has a cylindrical vacuum chamber (4 m

length � 0.2 m radius) much larger than the flux rope
dimension (0.5–1.5 m length � 0.03 m radius). For the
experiments relevant to the present work, one plasma gun
[Fiksel et al., 1996] was radially inserted from the top as
shown in Figure 4. The plasma gun contains a miniaturized
plasma source with a circular 0.4 cm radius nozzle aperture
in which a hydrogen plasma is produced by an arc
discharge. The arc plasma is maintained for �10 ms by a
pulse forming network from which a current is drawn
during a �1.5 ms pulse that biases the external anode
positive relative the floating gun arc. The external anode
location along the z axis determines the flux rope length.
The constant, uniform, axial (in the z direction) back-
ground magnetic field B0z, can be varied within the range
0–2 kGauss.
[16] To describe the plasma in RSX, we rely on a simple

model that captures qualitatively the main features of the
plasma generated in RSX but thanks to its simplicity and
generality can be easily related to configurations relevant to
space and astrophysical systems. We consider a simple
mathematical model of a flux rope based on the textbook
screw pinch [Freidberg, 1987]. The magnetic field expres-
sion in cylindrical (r, q, z) coordinates is

Bq ¼
B0r

r2 þ w2

Bz ¼ 1

Br ¼ 0

ð1Þ

Figure 3. Experimental data from a typical plasma shot.
From to bottom profiles of the plasma properties are shown:
(a) electron temperature, (b) parallel resistivity, (c) density
and pressure, and (d) tangential magnetic field and current.
SI units are used.

Figure 4. Artist’s rendition of the experimental config-
uration simulated in the present paper. One plasma gun
produces a flux rope in a cylindrical vessel with a axial
magnetic field generated by outside coils. The rope
generates its own tangential field and can be unstable to
the kink instability, as shown. The position and view angle
of the camera are shown.

A12S06 LAPENTA ET AL.: KINK INSTABILITY OF FLUX TIED/FREE ROPES

3 of 19

A12S06



representing an helical magnetic field with helical pitch
determined by the amplitude of the q component (i.e., by
B0).
[17] The magnetic field is not force free and is in balance

with a plasma pressure:

p ¼ B2
0w

2

2m0 r2 þ w2ð Þ2
ð2Þ

Since the pressure is equal to p = rkT, the freedom in the
relative choice of the density and temperature is used to best
represent the plasma in RSX, where the temperature and
density have a similar profile: r = kT =

ffiffiffi
p

p
. In some

reference runs below a uniform density r0 is also
considered.
[18] Figure 5 shows the initial pressure and poloidal

magnetic field profile for the case B0 = 1. The surface
q = 1 is completely external to the bulk of the plasma
resulting in a configuration suitable to study external kink
modes. The configuration described above represents a
reasonable qualitative model of a flux rope in RSX. The
approximate scale is determined by comparing the wall
radius and the temperature profile (directly linked to the
Spitzer resistivity): one unit of the simulations corresponds
to 4 cm in the real device. Below, we study the stability
properties of such a flux rope in conditions valid and
applicable to all the cases just listed.

3. Simulation Approach

[19] All simulations are carried out using the FLIP3D-
MHD code [Brackbill, 1991] based on the standard

viscoresistive MHD model. The viscoresistive MHD
model, written in the Lagrangian frame, is summarized
by mass continuity,

dr
dt

¼ �rr � v; ð3Þ

Faraday’s law,

d

dt

B

r

� �
¼ B

r
� rv� 1

r
r� hJ½ ; ð4Þ

where a resistive Ohm’s law is assumed,

E ¼ hJ� V� B; ð5Þ

momentum conservation,

r
dv

dt
¼ �r pþ r þ B2

2

� �
þr � BB; ð6Þ

internal energy equation

r
dI

dt
¼ �pr � vþ h J � Jð Þ: ð7Þ

and by Ampere’s law,

r� B ¼ m0J ð8Þ

[20] The flow variables are the mass density, r, the
magnetic field, B, the current density, J, the fluid velocity, v,

Figure 5. Initial magnetic field Bq (solid), pressure (dashed) and safety factor q (dash-dotted) profile for
a case with B0 = 1.
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the specific internal energy, I, and the plasma pressure p.
Here m0 is the magnetic permeability, h is the resistivity.
The pressure is given by an ideal gas equation of state, p =
(g � 1)rI. The viscous term, r, is given by the Navier-
Stokes formula [Brackbill, 1991], where n is the scalar
viscosity.
[21] The resistivity is chosen either uniform (h = h0) or

according to Spitzer’s resistivity law [Spitzer, 1956]:

h ¼ h0T
�3=2 ð9Þ

where the temperature is defined as usual: T = p/kn. Note
that the Spitzer resistivity model typically provides an
insufficient description of the actual resistivity in space and
astrophysical plasmas, and even in fusion experimental
devices, where anomalous effects dominate. However, in
many lower temperature experimental devices (including
RSX), the Spitzer resistivity model provides a reasonable
first-order model of the relatively collisional plasma present
[Trintchouk et al., 2003; Furno et al., 2005]. To express the
reference resistivity, we use the Lundquist number defined
as S = vAw/h0, and to express the uniform viscosity, we use
the Reynolds number defined as Re = vsw/n, where vs is the
sound speed.
[22] FLIP3D-MHD is based on the fluid particle in cell

(PIC) method [Brackbill, 1991] that uses particles to model
the fluid advection but uses a computational grid to solve
the evolution equations for the fluid quantities written in
Lagrangian form. The time discretization is implicit to
allow larger time steps [Brackbill, 1991]. The approach
in FLIP3D-MHD is distinct from the SPH method
[Monaghan, 1992] that uses particles and interaction
kernels also to solve for the fluid quantities. Also, it is
distinct also from grid-based methods that discretize the
advection term on the grid as well. The condition r � B = 0
is imposed at each time step. Space is scaled to the
characteristic length of the initial equilibrium w, density is
normalized to the uniform reference value r0 and time is
scaled by the Alfven time, t = L/vA, where vA is the Alfven
speed. The magnetic permeability m0 is unitary.
[23] FLIP3D-MHD has been previously used and applied

in a number of studies [Brackbill and Knoll, 2001; Lapenta
and Knoll, 2004, 2005; Lapenta and Kronberg, 2005]. The
coordinate system chosen in the code is cartesian. This
differs significantly from the typical plasma physics code
that uses cylindrical coordinates. Here the system is repre-
sented by a parallelepipedal domain of size Lx = Ly = 10w
and Lz = 20w. The actual circular wall of the device is
described with the immersed boundary method.
[24] The immersed boundary method [Peskin, 2002]

allows the description of arbitrarily (and even changing)
boundaries or interfaces between materials. The method is
extremely powerful, especially when combined with non-
uniform or adaptive grids and has been applied successfully
to numerous applications [Peskin, 2002]. However, the case
at hand is very simple and the immersed boundary method
becomes straightforward. The interface is a circle embedded
in a uniform cartesian grid. The metal vessel of RSX is
represented by assigning material particles everywhere
outside a circle corresponding to radius R = 5w. The plasma
inside the vessel is then represented by regular computa-
tional particles that represent Lagrangian markers evolving

according to the MHD equations. The computational
particles outside the circle are stationary and represent a
material with zero resistivity (for an ideal wall, easily
generalizable to resistive walls).
[25] The immersed boundary method correctly represents

the response of a metal wall: it imposes no radial plasma
velocity at the wall and it imposes the correct boundary
conditions on the magnetic field. The use of the immersed
boundary method in a PIC description of fluid equations of
any type results in an effective replacement of a sharp
boundary with a diffuse transition with a thickness
equivalent to the size of the computational particle [Lapenta
and Brackbill, 1996; Lapenta et al., 1995]. In FLIP3D-
MHD the particle size is chosen to be in each direction
equal to the corresponding grid spacing. The interfaces
become transition regions of thickness equal to the cell size.
The effect of the finite transition introduces a discretization
error of the same order as the error already introduced by
discretizing the operators. Except for special circumstances,
there is no reason for imposing exact boundary conditions
to operators discretized with a certain truncation error.
However, it is crucial that the discretization error be kept
of the same order as the truncation error on the interior
domain to prevent the solution from being dominated by
boundary errors. We have used the approach in previous
publications [Lapenta and Brackbill, 1996; Lapenta et al.,
1995; Lapenta, 1999, 2002] and we have further tested the
approach here recovering the vacuum field solution within
the expected truncation error and we have verified a
posteriori that the boundary conditions are indeed correctly
imposed on the boundary.
[26] The boundary conditions at the end walls (z = 0 and

z = Lz) are chosen in three different ways to represent
different experimental or natural situations. First, periodic
boundary conditions are applied to represent conditions
typical of toroidal devices or closed ropes. In this case
the actual toroidal rope is represented as a straight periodic
cylinder.
[27] Second, to represent conditions believed to be

typical of solar coronal plasmas line tying is applied at
both ends of the flux rope. For such a case the velocity field
is chosen to be zero at both ends by applying Dirichelet
boundary conditions.
[28] Finally, in some parts of the solar corona, e.g., in the

coronal holes and in some active regions (see Figure 1) of
the corona, flux ropes are present anchored at one end on
the solar surface but free at the other. The same configu-
ration is prevalent in astrophysical jets (see Figure 2). As
noted above, the flux ropes produced in RSX are anchored
at the plasma gun but different conditions can be chosen at
the other end, ranging from nearly free motion to line tying,
depending on the choice of the end electrode.
[29] For the free boundary condition, we follow the

prevalent choice in the literature, i.e., the application of
Neumann boundary conditions [Zwingmann, 1987]:

@v

@z

����
z¼Lz

¼ 0 ð10Þ

often used in solar and astrophysical simulation to represent
an open boundary. Similar expressions hold for all other
fields.
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[30] For RSX this is a reasonable approximation of the
plasma behavior at the end cathode where a sheath forms.
Previous studies of such sheath [Ryutov et al., 2006] shows
that the correct condition to apply is

@v

@z

����
z¼Lz

¼ kv ð11Þ

The two conditions above are extreme cases of this
condition, Dirichelet conditions corresponding to k ! 1
and Neumann conditions corresponding to k = 0.
Intermediate values of k would result in intermediate results
between the two cases considered here.
[31] In the results below the simulation box has dimen-

sions [�Lx, Lx], [�Ly, Ly] and [0, Lz] with Lx = Ly = 5 and
Lz = 20. The system is discretized using a regular grid of
75 � 75 � 150 Lagrangian markers (particles), with
27 particles per cell in a 25 � 25 � 50 grid with a time
step Dt/tA = 0.1.

4. Stability of the Kink Mode

[32] The initial configuration described in section 2 is
liable to become unstable to the kink instability [Kadomtsev,
1992; Wesson, 2004; White, 2001]. The stability of a
plasma with arbitrary shape needs to be computed numer-
ically [Wesson, 2004], but for simple configurations with
flat current profiles surrounded by vacuum and by ideal
walls can be computed analytically [Goedbloed and Poedts,
2004; Kadomtsev, 1992; White, 2001]. Previous results
have indicated that the stability of kink modes depends
strongly on the applied boundary conditions.
[33] The system under investigation is surrounded in the

radial direction by a circular metal wall that could provide
stabilization. This configuration is clearly suitable to the
experiment RSX but it introduces a significant deviation
from the reality of space and astrophysical systems. The
effect of the surrounding walls, including their finite
resistivity, is one of the most active areas of research in
fusion plasmas [Wesson, 2004] and will not be addressed
here.
[34] In the present work the attention is focused on the

effects of the boundary conditions imposed in the axial
direction. The axial conditions are directly linked with the
mechanisms creating and sustaining a flux rope. As noted
above, we consider periodic, open, and line tying condi-
tions suitable for different natural and manmade plasmas.
Below, the previously published conclusions are summa-
rized limiting the scope to the previous results of interest to
the present discussion.
[35] Most of the analysis of kink modes has been focused

on the application to toroidal plasmas where periodic
boundary conditions are appropriate in the straight-cylinder
approximation. In this case a flux rope becomes unstable to
the kink mode when the current exceed the so-called
Kruskal-Shafranov (KS) limit [Goedbloed and Poedts,
2004]:

IKS ¼ 2pað Þ2Bz

m0L
ð12Þ

where L is the length of the rope, a is its radius, and Bz is the
axial magnetic field, assumed uniform. Although, the KS

limit is most easily derived for uniform current profiles, its
validity is more general [Goedbloed and Poedts, 2004].
[36] An alternative formulation of the KS limit, very

popular in the fusion literature, is based on introducing
the so-called safety factor:

q rð Þ ¼ 2prBz

Bq rð ÞL ð13Þ

that has the geometrical meaning of inverse of the pitch
angle of the magnetic field lines, with q = 1 meaning that
the field lines close upon themselves after one turn (in a
periodic rope) [Goedbloed and Poedts, 2004]. The stability
limit of the kink mode can be easily formulated in terms of
the safety factor by the statement that q > 1 everywhere in
the domain for the plasma to be stable.
[37] Previous work has shown that when the axial

boundary conditions are changed the stability of a flux
rope to the kink mode is modified. As can be imagined,
flux ropes free at one end are more unstable, while flux
ropes tied at both ends are more stable.
[38] Line tying at both ends of a flux rope has been

addressed primarily in the solar physics community. The
main conclusion of relevance here is twofold. First, line
tying increases the stability of a flux rope by increasing the
limit current beyond the KS limit [Hood and Priest, 1981;
Einaudi and Van Hoven, 1983; Ryutov et al., 2004;
Evstatiev et al., 2006]. The eigenfunctions are no longer
harmonic functions (with displacement forced to remain
zero at the line-tied ends). Second, the nonlinear saturation
level is reduced because the flux ropes remain anchored and
cannot move in the region close to the ends [Baty et al.,
1998; Lionello et al., 1998b], changing the nonlinear
evolution and leading to localized current sheet formation
[Lionello et al., 1998a].
[39] In the present paper the periodic and line-tied cases

are primarily used as comparison for the case of a flux rope
line-tied at one end and free at the other. As noted above,
this situation is typical of jets in astrophysical systems and
for open field lines in the solar corona, anchored on the
photosphere at one end only.
[40] The case of open boundary conditions has been

considered in a previous work directed specifically at the
conditions prevalent in RSX [Ryutov et al., 2006; Furno et
al., 2006]. In that case the end electrode forms a sheath
where the flux rope is nearly free to roam. A linear theory
based on a model of the sheath leads to the conclusion that
flux ropes tied at one end and free at the other are more
unstable than periodic or line-tied ropes. Indeed, it was
shown that the current for the instability limit drops to just
half of the KS limit. In terms of the safety factor, a free-
ended rope is stable if q > 2 everywhere in the domain. We
note that in the previous work by Ryutov et al. [2006] the
boundary conditions represent the sheath in RSX, while
here the focus is on Neumann boundary conditions to
represent a completely free-ended flux rope.
[41] The increased susceptibility to the kink instability of

a rope free at one end and tied at the other is not a foregone
conclusion. The tying tends to stabilize the rope and the
open boundary condition allows the release of energy at the
open boundary, possibly reducing the availability of free
energy for the instability. Yet, previous theoretical work
[Ryutov et al., 2006] has proposed that a reduced KS limit
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applies and recently, experimental evidence has confirmed
this suggestion [Furno et al., 2006]. Below, the effect on
the kink instability of allowing one free end in a flux rope is
investigated by simulation.

4.1. Periodic (Infinite) Flux Ropes

[42] The periodic case is repeated here for reference and
to provide a validation of the simulation code used here. A
system with B0 = 1, uniform density and uniform resistivity
(corresponding to S = 103) is considered. The radial
dependence of the safety factor is shown in Figure 5.
[43] The minimum value of q occurs in the center and is

q = p/10, corresponding to a severely unstable periodic
configuration. Table 1 reports the unstable m = 1 and m = 2
modes computed with a stability linear code and from a
simulation conducted using the FLIP3D-MHD code with
the approach described above (section 3). The modes are
defined by a Fourier series analysis where the quantum
number m refers to the q angular (poloidal) direction and n
to the axial (toroidal) direction.
[44] The results of the linear theory are obtained by an

independent stability code. Some details of the implemen-
tation of the reference linear code used here are described
by Evstatiev et al. [2006]. In summary the equations of
viscoresistive MHD, equations (3)–(8), are linearized with
respect to a given equilibrium and the temporal and q, z
dependence of the unknowns is assumed of the form
exp[i(wt + mq + 2pnz/Lz)] (where m and n are the poloidal
and axial wave number, respectively, and w is the frequency
of the perturbation). The equations, which are now only
dependent upon radius, are then discretized with finite
difference techniques on a uniform computational grid in
the radial direction, for fixed m and n. The problem is
finally cast as an eigenvalue problem for w and standard
root-finding techniques are used to compute the stability of
the system. The results presented here have been obtained
with Nr = 5000 discretization points which are enough to
insure the convergence of the eigenvalue on the third digit.
[45] The simulation is conducted without any initial

perturbation and a multitude of modes is excited by the
initial discretization error. Figure 6 shows the results of the
Fourier analysis of the tangential component of the velocity
field (vq) for the m = ±1, n = 1, 2, 3 modes. The m = 1 and
m = �1 modes are excited to a different degree, depending
on the initial perturbation provided by the use of a cartesian
grid to represent a cylindrically symmetric state. Such
perturbation is uncontrolled but can be reduced by refining

Table 1. Benchmark of the Linear Growth of the Kink Instability

in a Periodic Plasma Columna

m n Linear Theory gtA Simulation gtA
m = 1 n = 1 0.080 0.05 ± 0.02
m = 1 n = 2 0.121 0.13 ± 0.02
m = 1 n = 3 0.029 0.04 ± 0.02
m = 2 n = 2 0.0017 0.03 ± 0.02
m = 2 n = 3 0.0326 0.04 ± 0.02
m = 2 n = 4 0.0787 0.06 ± 0.02
m = 2 n = 5 0.0730 0.05 ± 0.02
m = 2 n = 6 0.0119 0.02 ± 0.02

aThree unstable m = 1 modes are present with different axial numbers n =
1, 2, 3 and five with m = 2 and n = 2, 3, 4, 5, 6.

Figure 6. Evolution of the amplitude of the three unstable
m = 1 (solid) and m = �1 (dashed) modes in a periodic
system. Run with uniform viscosity (Reynolds number
Re = 103) and resistivity (Lundquist number S = 103).
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the discretization. The unstable modes present a clear and
extended linear phase followed by a nonlinear coupling of
the different Fourier components. The growth rate in the
linear phase can be compared with the linear theory.
[46] Table 1 compares linear theory and simulation results

for the unstable m = 1, 2 modes. Agreement is within the
uncertainty of the detection algorithm. The uncertainty is
computed by Fourier analyzing different field components
for different time intervals and measuring the spread. This
uncertainty does not include the contribution of the discre-
tization error, but a covergence study is conducted in time
and space demonstrating that the discretization error is lower
than the uncertainty in the detection algorithm. For compar-
ison, the same Fourier analysis is repeated for the same case
but with Spitzer resistivity (still with S = 103), and density
given by n =

ffiffiffi
p

p
, showing similar results and comparable

growth rates (see Figure 7).
[47] Besides the growth rate, the eigenfunction of each

mode can be compared with the results of the linear theory.
Figure 8 shows the three eigenfunctions of the three
components of the velocity from linear theory and from
the simulation, both with uniform resistivity. The eigen-
functions have the correct parity and the general shape is
recovered well in the simulation for all three components.
The eigenfunctions are obtained directly from the simula-
tion results at a time when the (m = 1, n = 1) mode
dominates but are still contaminated by contributions of
other modes and in particular by Alfven waves propagating
in the outer regions (shown as wiggles in the velocity field).

4.2. Finite Flux Ropes

[48] When the same case considered above (B0 = 1 with
Spitzer resistivity) is repeated using either line-tying at both
ends or line-tying at one end and free boundary at the other,
the results change very significantly. When nonperiodic
boundary conditions are used, the Fourier analysis looses its
ability to detected the modes in the system. The eigenfunc-
tions of nonperiodic systems are no longer simple harmonic
functions of z and couple different Fourier modes [Einaudi
and Van Hoven, 1983; Ryutov et al., 2004]. A better
measure of the growth of the kink mode is provided by
analyzing the energies: a consequence of the kink instability
is the conversion of magnetic energy into kinetic and
thermal energy. Overall energy conservation is valid only
in the case of periodic systems, while other boundary
conditions may allow outflow of energy from the system.
In particular, the open boundary case allows energy and
momentum to leak out of the open boundary making this
case fundamentally different from either line-tied or
periodic cases.
[49] The growth of the kinetic energy in the system is

shown in Figure 9 for three cases: periodic rope (Figure 9a),
rope tied at both ends (Figure 9b), and rope tied at one end
and free at the other (Figure 9c). The case considered here is
violently unstable in the periodic case, with the kinetic
energy increasing form its initial perturbation level (due to
the use of a Cartesian grid to represent a cylindrically
symmetric state) by two orders of magnitude.
[50] The free-ended case is more unstable and shows a

faster initial growth of the kinetic energy. However, the
energy in the free-ended case can leave the system from the
axial ends and tends to accumulate to a lower level than in

Figure 7. Evolution of the amplitude of the three unstable
m = 1 (solid) and m = �1 (dashed) modes in a periodic
system. Run with Spitzer resistivity with reference S = 103

and uniform viscosity corresponding to Re = 103.
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the periodic case. Furthermore, the tied end cannot move,
reducing the total displacement possible and further reduc-
ing the saturation energy. The line-tied case, instead, is
stable even for this relatively strongly unstable case (for
periodic ropes).
[51] To confirm the relative stability of the three types of

systems, another configuration is chosen. If B0 is reduced,
the safety factor increases to levels where the KS limit is no
longer exceeded and the rope remains stable in the periodic
case. Figure 10 shows the case with B0 = 1/5 where the
minimum value of the safety factor is q = p/2 largely above
the stability limit for periodic systems (q > 1) but below the
stability limit for free-ended systems (q < 2). Clearly,
the periodic and line-tied runs remain stable where, instead,
the free-ended rope remains violently unstable.
[52] The simulation results above confirm previous

experimental and theoretical works [Ryutov et al., 2006;
Furno et al., 2006] that suggested that free-ended ropes are
more susceptible to the kink instability. It is worth remarking
that while previous models were limited to the slender-rope
approximation, here the results are computed for a realistic
model of flux ropes including Spitzer resistivity, as appro-
priate for the accurate description of the RSX device.

5. Saturation of the Kink Instability

[53] The case of periodic ropes is considered first, to
make a direct link with previous theoretical work, primarily
with the theory of the bubble state model by Rosenbluth et
al. [1976]. The mechanism of saturation of the kink
instability in the present circumstances is illustrated in
Figure 11–14. The results are for a simulation with periodic
boundary conditions, with B0 = 1, n =

ffiffiffi
p

p
and resistivity

given by the Spitzer formula. The figures show a 2-D cross
section of a 3-D simulation at four different times during
the evolution. The quantities shown are the density r, the
axial current, the temperature, and the so-called helical flux.
In the limit of reduced MHD [Biskamp, 1993], the helical
flux is

y ¼ yp �
n

m

B0zpr2

L
ð14Þ

where n and m are the mode numbers and yp is the poloidal
flux. Each set of mode quantum numbers leads to a different
helical flux. In the present case the most interesting is m = 2,
n = 1, for reasons that will become apparent below. The
figures also report two lines: the black line is the
intersection of the mode resonant surface q = 2 with
the plane of the figures, the magenta line is the radius of
saturation predicted by the bubble state model by
Rosenbluth et al. [1976].
[54] The overall evolution entices the progressive dis-

placement of the plasma column (its kink, giving the
instability its name) until the surface of the dominant
resonant mode is reached. The displacement can be
observed for all quantities plotted. In the present case the
relevant surface where the displacements stalls turns out to
be q = 2 (depicted in black, see Figure 13). The fact that the
relevant mode resonant surface is q = 2 is in itself not a
foregone conclusion and it is not related to the linear
stability or the fastest growing mode. Below, a model is

Figure 8. Eigenfunctions for the velocity field of them = 1,
n = 1 mode. Results from the simulation code are shown as
stars, results from linear theory are shown as a solid lines. The
ratios between the peak value of each component are:
uq/ur = 1.74, uz/ur = 2.64, from linear theory and uq/ur =
1.56, uz/ur = 2.78, from the simulation results.
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provided to explain why that is the important mode reso-
nant surface and to predict it based on an analytical model.
[55] Once the plasma reaches the mode resonant surface,

further motion is impeded by the need to pass the resonant
surface seen by the plasma as a wall. Until this time, the

evolution of the mode is ideal, but once the resonant surface
is reached, nonideal effects become important. At early
stages before the plasma reaches the mode resonant surface,
helical surfaces can cross the lines because resistivity is
high (the temperature is low). However, as the plasma

Figure 10. Evolution of the kinetic energy for a flux rope with B0 = 1/5 for periodic boundary
conditions, for line-tying at both ends and for a case with line-tying at one end and open at the other
(labeled as open).

Figure 9. Evolution of the kinetic energy for a flux rope with B0 = 1 for periodic boundary conditions,
for line-tying at both ends and for a case with line-tying at one end and open at the other (labeled as
open).
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approaches the mode resonant surface, the temperature
increases and resistivity drops, slowing the process of flux
surfaces crossing the mode resonant surface. Yet the evo-
lution does not stop here. The plasma still evolves more
slowly, filling the region circled by the magenta line. To do
so, it must cross the mode resonant surface q = 2 (black
line) at speeds determined by the reconnection process
required to cross the surface. Evidence of reconnection is
seen in the break up and reconnection of the helical flux
surfaces leading to the progressive erosion of the island of
initially centrally located helical flux (see Figure 13 and
compare with the corresponding figures for previous times,
Figures 11–12). By the end time, the island has completely
disappeared (see Figure 14). Reconnection is also accom-
panied by the formation of a ribbon of current [Gerrard and
Hood, 2003] evident in Figure 13 as the narrow region of
inverted (blue) current near the q = 2 surface (black line).
The link between inverted currents and reconnection in flux
ropes is also supported by experimental evidence [Furno et
al., 2005].
[56] Furthermore, the reconnection process is accompa-

nied by heating of the plasma visible in Figure 13 as areas
of higher temperature in the regions formed on the separa-
trix around the magnetic island. Note that Figures 11–14
are 2-D cuts of a 3-D system and island and x-point are to

be regarded as extending out of the plane in a helically
symmetric way.
[57] The eventual steady state is characterized by a

completely displaced plasma column that has reached the
maximum displacement radius (the magenta line). The
helical flux no longer presents any remnant of the initially
centrally located island but is monotonically decreasing
away from its maximum located in proximity of the
magenta line. The current and the temperature, instead,
remain primarily localized within the dominant resonant
surface at q = 2.
[58] Note that the region between the dominant mode

resonant surface (black line) and the eventual saturation
radius (magenta line) does not show any of the traces of
reconnection mentioned above: there is no island formation
at the saturation radius, there is no heating of the plasma and
there is no inverted current forming. The only quantity that
clearly shows that the plasma has reached its saturated level
is the density. Note in particular how the plasma density
tends to spread along the saturation radius. The saturated
magenta line is a purely theoretical line based on the theory
by Rosenbluth et al. [1976] but with no direct physical
identity, yet the plasma density runs against it and spreads
along it as if it was water flowing against a physical wall.
This is a remarkable indication that the saturation line is

Figure 11. Run with periodic boundary conditions, B0 = 1 at time t/tA = 24.6, during the linear phase.
False color representation of four significant quantities in two-dimensional (2-D) a section of the 3-D
simulation at z = Lz/2. Quantities shown: (a) Density, (b) axial current, (c) helical flux (for mode numbers
m = 2, n = 1), (d) temperature. In each panel the thick black line is the intersection of the q = 2 surface
with the plane of the figure and the magenta line is the line corresponding to the saturation radius
predicted by the bubble state theory [Rosenbluth et al., 1976] (see text).
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Figure 12. Run with periodic boundary conditions, same as Figure 11 but at time t/tA = 50.1, near the
end of the linear phase.

Figure 13. Run with periodic boundary conditions, same as Figure 11 but at time t/tA = 66.7, during the
first nonlinear phase, where the plasma column reconnects and passes through the mode resonant surface
q = 2 (black line).
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really predicted correctly by the theory due to Rosenbluth et
al. [1976] and summarized below.

5.1. Bubble State Model of the Saturation Mechanism

[59] The overall phenomenological description above can
be made quantitative by introducing a mathematical model
based on the so-called reduced MHD picture (also known as
Strauss model in America and Kadomtsev-Pogutse in the
former Soviet Union) [Kadomtsev and Pogutse, 1973;
Strauss, 1976; Kadomtsev, 1992]. The model predicts what
is the dominant resonant mode (and correspondingly what is
the mode resonant surface, black line) and what is the
eventual saturation circle (magenta curve). Below, the
model is summarized and its results are compared quanti-
tatively with the simulation results.
[60] The reduced MHD model can be based on the

assumption that the plasma is immersed in a large external
field. In the present work the rope is produced in a vacuum
chamber with a strong uniform axial field B0 = Bzbz.
[61] The magnetic field and velocity field are both

assumed to be divergence free (obvious for B, but an
approximation for v):

B ¼ Bzbzþ bz�r?yp ð15Þ

v ¼ vzbzþ bz�r?f ð16Þ

where bz is the unit vector in the z direction and r? is the
gradient operator in the plane normal to z, in cylindrical
coordinates: r? = br@r + (bq/r)@q. The new functions are

called poloidal flux function yp and stream function f,
respectively.
[62] The equations for reduced MHD follow from an

asymptotic expansion in the inverse aspect ratio � = w/Lz.
The ensuing equations are [Biskamp, 1993]

r
@x
@t

þ v? � r?x
� �

¼ B � rjz þ mrr2x

@yp

@t
þ v? � r?yp ¼ Bz

@f
@z

þ hr2yp

ð17Þ

where dimensionless quantities (as described in section 3)
are used. The axial current is computed from

jz ¼ r2
?yp ð18Þ

and the axial component of the vorticity is computed as

x ¼ r2
?f ð19Þ

Note that the axial velocity vz is decoupled from the other
equations and need not be assumed constant or zero.
However, for the present purposes it can be neglected
[White, 2001].
[63] A crucial property of the reduced MHD equations (17)

is that of admitting an energy integral of motion. For the
purpose of deriving a simplified model for the saturation of
the external kink mode observed in the simulations, a
simplified configuration is considered of a simply connected

Figure 14. Run with periodic boundary conditions, same as Figure 11 but at time t/tA = 88.1
corresponding to the saturated state.
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plasma region surrounded by vacuum and further sur-
rounded by a circular wall. Moreover, a single helicity
mode is assumed where all quantities depend on the axial
and angular direction harmonically, e.g.,

yp r; q; z; tð Þ ¼ yp r; tð Þe�i2pnz=Lz�imq ð20Þ

where the same symbol is used for the whole quantity and
its harmonic component.
[64] Under these circumstances an energy integral can be

derived by multiplying scalarly the first of equation (17)
with v?:

Eb ¼
1

2

Z
pla

r rfð Þ2þ ryð Þ2
h i

dV � 1

2

Z
vac

ryð Þ2 þ 2pyw ð21Þ

where the helical flux y has been used. The first integral is
computed within the plasma region and the second within
the vacuum region. The integral above is a constant of
motion under the hypothesis that the helical flux at the wall,
yw, is held constant, as appropriate for an ideal wall.
[65] The configuration under investigation does not

exactly fit this model. The plasma density and current falls
off rapidly from the center, but it is not quite a sharp
transition between vacuum and plasma. The choice of a
continuous profile in the simulations is dictated by the need
to represent the plasma in RSX with fidelity. Nevertheless,
the initial configuration can be represented reasonably well
by a plasma column of radius approximately a = w carrying
the whole current in the system, surrounded by vacuum and
by a wall at radius b = 5. The model is accurate in two
ways. First, the total current is a crucial parameter for the
kink instability and is preserved. Second, the outer region in
the simulations and in RSX is not quite vacuum but it has
the main property of vacuum from the perspective of
studying the kink instability; it has a very large resistivity
(thanks to a lower temperature and the use of Spitzer
resistivity). This latter point is what characterizes the
present configuration as an external kink mode rather than

an internal kink mode where magnetic field surfaces mix
and reconnect within the plasma.
[66] On the basis of these approximations, the integral of

motion Eb can be used [Rosenbluth et al., 1976] to deter-
mine the lowest energy state and to pose the question if that
is indeed the relaxed state of the plasma column after
saturation of the kink mode. To analyze this point, the
concept of ‘‘bubble state’’ is introduced. A bubble state is
defined as a state where a (uniform in density and current)
plasma is displaced radially to form a shell (of inner radius

rb and outer radius rs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ a2

q
) circling a vacuum bubble

and further surrounded by more vacuum and eventually by
the wall. Figure 15 shows the concept. Note that the
configuration of a bubble state is a single helicity state,
with a specific m and n. The radial dependence shown in
Figure 15 is further modulated by the angular harmonic
dependence with mode number m and axial dependence
with mode number n.
[67] The integral Eb can be computed analytically in this

case and the resulting energy is

Eb ¼ p
r2s a

2

2
� p
ln rs=bð Þ

b2 � r2s
2

þ yw

� �2

ð22Þ

where yw = n(a2 � b2)/m � (a2/qa)ln(a/b). The plasma is
assumed to have a uniform current and its safety factor is
correspondingly uniform (within the plasma) and equal to
qa.
[68] Equation (22) provides a theoretical prediction of

what is the dominant mode and the radius of saturation for
the kinked rope. The equilibrium relaxed state is predicted
to be the bubble state of minimum energy. Depending on the
plasma radius, a, the wall radius, b, the plasma safety factor
qa, and the ratio of the quantum numbers m/n of a kink
mode, the energy Eb of a bubble state of radius rs can be
lower or higher than the unperturbed state given by the rope
remaining on axis. Note that the existence of a bubble state
of energy lower than the unperturbed state is not logically
directly linked to the stability of a rope. The stability or
instability implied by the nonexistence or existence of a
lower-energy bubble state is a nonlinear stability concept,
not directly linked to linear stability.

Figure 16. Energy of the bubble state for different outer
radii Rs. Modem/n = 2 is shown as a solid line, modem/n = 3
is shown as a dashed line.

Figure 15. Schematical representation of a bubble state.
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5.2. Comparison of the Bubble State Model With
Simulation Results

[69] For the case under consideration (B0 = 1), the model
described above is analyzed assuming a = w = 1 and b/w = 5,
with a uniform current inside the plasma equal to the total
current in the simulation. Figure 16 shows the energy of
modes m/n = 2 and m/n = 3. All other modes do not present
a lower energy bubble state. Note that the bubble state with
m/n = 2 has a slightly lower energy than modes m/n = 3.
Note also that the minimum energy for modes m/n = 3 is so
close to the wall to interfere with the immersed boundary
method description of the wall, which becomes a cell-wide
transition region, reaching r = 4.6.
[70] On the basis of the model of bubble states, the

prediction is that the plasma column should reach a relaxed
state at rs/w = 3.23 and that at saturation mode numberm = 2,
n = 1 should dominate. Note that the prediction is based on
the somewhat arbitrary decision to consider the position of
the plasma/vacuum interface in the initial state equal to w.
Figure 17 investigates the sensitivity of the prediction to this
choice. As can be observed, even a drastic change in the
plasma radius used for the bubble state calculation only
changes the radius of relaxation by small values.
[71] Figure 14 shows the final relaxed state and depicts

(in magenta) the radius corresponding to the predicted
relaxation radius rs/w = 3.23. The agreement is remarkable.
Furthermore, as noted above, in the intermediate phase of
relaxation when the plasma surpasses the mode resonant
surface, it is the surface corresponding to q = m/n = 2 that is
relevant, confirming that the dominant mode for the non-
linear relaxation is indeed mode (m = 2, n = 1).
[72] Finally, yet another confirmation that the dominant

mode for saturation is the m = 2, n = 1 mode can be
obtained by observing the spectrum at saturation, shown in
Figure 18. In each figure, the contribution of positive and
negative m modes is summed, and the spectrum is repre-
sented as a function of the quantum number n. Symmetry
with n correctly descends from the definition used. Note
that a large number of modes coexist, but the mode m = 2,
n = 1 is dominant as predicted by the theory described
above.

[73] The bubble state model is based on the reduced
MHD description of a single helicity state. The reality in the
simulation is remarkably different. Figure 18 shows that
besides the main mode, many others are present. Indeed the
final state is not simply a m = 2 mode. It shows an elliptical
shape of the deformed column (a property of the m = 2
mode) but also a net displacement off center (a property of
the m = 1 mode). Yet it is remarkable that this mixed
helicity final state still remains confined within the circle
predicted by the single helicity bubble state.
[74] As noted in the summary of the derivation above, the

bubble state theory by Rosenbluth et al. [1976] deals with
nonlinear considerations unrelated to linear stability. Indeed,
when the bubble state theory is applied to the stable case
with B0 = 1/5 (see Figure 10), the bubble state theory
predicts a nonlinear more stable bubble state with a dis-
placement rs/w = 3.84 (with mode number m/n = 4) larger
than in the linearly unstable case B0 = 1. This conclusion is
indirectly confirmed by the comparison of the saturation

Figure 18. Periodic system with B0 = 1. Spectrum at
saturation (t/tA = 87), for mode numbers m = ±1 (a) and
m = ±2 (b) as a function of n.

Figure 17. Dependence of the radius of the minimum
energy bubble state for mode m/n = 2 as a function of the
plasma radius a.
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Figure 19. Run with free/line-tied boundary conditions, B0 = 1. False color representation of four
significant quantities near the end of the linear phase in 2-D a section of the 3-D simulation at z = Lz:
(a) Density, (b) axial current, (c) helical flux (for mode numbers m = 2, n = 1), (d) temperature. The black
and magenta line have the same meaning as in Figure 11.

Figure 20. Run with free/line-tied boundary conditions, same as Figure 19 but at time t/tA = 120.6.
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level for the kinetic energy as shown in Figures 9–10 for
the free-ended ropes where both cases are linearly unstable.
The saturation level for the more linearly unstable case B0 = 1
is lower than that for B0 = 1/5, in accord with the bubble
state prediction (even though the bubble state prediction

applies strictly only to the periodic case). This result,
however, is only suggestive as it might also be affected
by the indirect relationship between the displacement and
the saturation level of the kinetic energy, affected also by the

Figure 21. Magnetic flux tubes within a rope tied at one end and free at the other. Two times are shown:
initial state (a) and at saturation, t/tA = 120.6. (b) The color shows the height along the z axis.
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outflow of energy from the open boundary of the simulation
box.

6. Saturated State of a Free/Tied Flux Rope

[75] The analysis reported above is valid for a periodic
system, and the study of the bubble states assumes the
existence of modes with defined helicity in a periodic
system. For the case with line-tying at one end and free
boundary conditions at the other, the analysis cannot be
applied directly.
[76] However, Figures 19–20 show the configuration of a

free-ended rope for the same parameters considered in the
previous section (B0 = 1, Spitzer resistivity with S = 103).
As can be observed the intermediate nonlinear phase is still
dominated by the surface q = 2. Furthermore, the final
relaxed state is still determined by rs/w = 3.23 as in the
periodic case.
[77] There is, however, a fundamental difference. Figures

19–20 show a cross section of the plasma rope at z = Lz.
Closer to the line-tied end, the rope is less displaced up to
no displacement at all at the tied end. Figure 21 shows a 3-D
representation of the flux rope in its initial configuration and
its relaxed state. Note how the line-tied end (closer to the
reader) remains fixed, while the free end moves away. A
circle in pink is shown for reference to remind of the initial
position of the rope.
[78] The simulations shown here are but a qualitative

representation of the real system in RSX. Future experi-

mental work will have to test the observations made in the
simulations regarding the saturation level and the properties
of the saturated state. The experiments available thus far
provide already a confirmation to one of the conclusions
described above regarding the saturated state of a rope free
at one end and tied at the other. Figure 22 shows four
subsequent figures taken from the camera angle along the
plasma rope shown in Figure 4. The subsequent shots
provide evidence of the increasing kinking of the initially
straight rope. The final state is clearly still tied to the plasma
gun generating the rope and is progressively more dis-
placed, spiraling outward as observed in the simulations.
Future work will be needed to make a quantitative connec-
tion between the relaxed maximum displacement observed
in the simulations, predicted by the bubble state model of
Rosenbluth et al. [1976] and experiments.

7. Conclusions

[79] The results above can be summarized into two
findings. First, the ranking of ropes according to their
liability to the kink instability is free-ended flux ropes are
the most unstable, with their stability needing q > 2,
periodic ropes come next, with the classic KS limit to
determine their stability. The most stable are line-tied flux
ropes. This finding is of significance to solar and astro-
physical flux ropes where the case of free-ended ropes may
be relevant and their reduced stability limit needs to be
taken into account.

Figure 22. Sequence of images taken from a camera with a oblique view angle along the axial direction
(see Figure 4). Four subsequent times are shown illustrating the progressive kink and its saturation to a
state line-tied at the plasma gun but free at the free end. The largest displacement is at the free end.
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[80] Second, the mechanism for nonlinear evolution pro-
gresses in two steps. The first onsets when the plasma
column reaches the dominant mode resonant surface. Here,
reconnection is needed for the plasma to progress further.
The actual rate of reconnection is beyond the scope of the
present paper. Spitzer resistivity is used within the regular
resistive model; in real systems the situation is more
complicated because of the presence of other nonideal
mechanisms besides just collisional resistivity. The last
stage of the evolution is the formation of a bubble state
where the plasma reaches the radius predicted by a simple
model due to Rosenbluth et al. [1976]. A significant
distinction needs to be made between the tied/free-ended
and the periodic case. The tied end has zero displacement at
saturation, while the displacement spirals out away from the
tied end. The maximum displacement is at the free end and
it is the same as in the periodic case.
[81] The conclusions reached above can be compared

with experiments conducted on RSX. The decreased stabil-
ity of free flux ropes has indeed been observed in experi-
ments [Furno et al., 2006]. The typical saturated column
has the spiral structure observed here [Furno et al., 2006,
2005]. The key prediction above about the ability of the
bubble-state mode to predict the saturation level needs yet
to be investigated experimentally.
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